Theory and Practice of Spatial Planning | Number 7 | Year 2019 | ISSN 2350-3637

Manja Kitek Kuzman1, Martina Zbašnik-Senegačnik2:

Digitalization Process in Architecture: Wood and Wood Constructions

Creative Commons License DOI 10.15292/IU-CG.2019.07.060-067 | UDK 624.011.1:004 | SUBMITTED: 8/2019 | REVISED: 9/2019 | PUBLISHED: 10/2019
Author's affiliation: 1 University of Ljubljana, Biotechnical Faculty, Slovenia, 2 University of Ljubljana, Faculty of Architecture, Slovenia

Organic, flowing natural forms have always been the inspiration for creating a built environment. Nature has developed the forms of organisms and their processes in terms of maximum optimization. Organic architecture is based on studies of forms in nature; as a rule, they are almost not straight but rounded. The design and implementation of such shapes, however, is more difficult than orthogonal and requires a good spatial performance, knowledge of geometry and also suitable tools. Digitization has also led to the development of designing complex geometric shapes - free form shape that were not manageable with simple tools. Thanks to the potential of computing, parametric design and digital manufacture, it is now possible to design structural elements and structures that deviate from orthogonal practice and form complex shapes. Digitized processes have also entered other industries, which are related to buildings construction and changed the way they work, as well as finished products. Architects, designers and engineers are provided with powerful analytical tools to create new designs, predict their behavior, and formulate effective production strategies. The current materials that has been typical for organic architecture joined new engineered wood products, which have the advantage of high load-bearing capacity, good dimensional stability and flexibility in larger dimensions. Engineered wood products offers greater design freedom for ambitious construction and manufacture technology. The classic construction methods are joined by a novel 3D printing technology, including 3D printing with wood filaments, which already allows large building structures. The article presents digitalization processes in architecture – with examples of the most recent realized projects in which they were involved in different design stages.

digitalization, wood, timber constructions, architecture


Kitek Kuzman, M., Zbašnik-Senegačnik, M. (2019). Digitalization Process in Architecture: Wood and Wood Constructions. Igra ustvarjalnosti - Creativity Game, (7), 60-67.

Bianconi, F., & Filippucci, M. (Eds.). (2019). Digital Wood Design: Innovative Techniques of Representation in Architectural Design (Vol. 24). Springer, Basel.
Benyus, J. (2008). A Good Place to Settle: Biomimicry, Biophilia, and the Return of Nature’s Inspiration to Architecture, in: Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life [eds. Kellert, S. R.; Heerwagen, J.; Mador, M.], Willey, New York.
Bianconi, F, Filippuci, M. (2019). Wood, CAD and AI: Digital Modelling as Place of Convergence of Natural and Artificial Intelligent to design Timber Architecture. V: Digital Wood Design (str. 3-61). Springer, Basel.
Birindelli, I., Cedrone, R. (2012). Modern Geometry versus Modern Architecture. V: Imagine Math. Between Culture and Mathematics. Emmer, M. (ur), Springer-Verlag Italia (str.105-115). Milan, Dordrecht, Heidelberg, London, New York.
Viollet-le-Duc, VEE (1854–1868). Dictionnaire raisonné de l'architecture française du XIe au XVIe siècle. Vol.8, Paris.
Fischer, JR. (2012). Optimizing Digital Organic Freeform Modelling for Fabrication by Using Parameterization With Glass Fibre Reinforced Plastics (GRP). eCAADe - Digital Applications in Construction, 2012, 30, vol.2, str. 181 -190.
Fuller, P. (2005). Buckminster Fuller:designing for mobility. Milano: Skira.
Furman, M., Kuhta, M. (2019). Povezljivost BIM-modela in CNC-stroja na primeru lesene okvirne montažne hiše. Gradbeni vestnik, 68, str. 120-126.
ISSA, R. (2014). Generative Alghoritms: Lindenmayer-System (L-System). (dostopno, november 2019).
Hemenway, P. (2008). Der Geheime Code. Köln: Evergreen GmbH.
Kariž, M., Šernek, M., Kitek Kuzman, M. (2017). Possible uses of wood in additive technologies (3D printing). Les/Wood, 66, No. 2, str. 71-84.
Kitek Kuzman, M. Sandberg, D., Moutou Pitti, R. (2018). Engineered wood products in contemporary architectural use : case studies = Produits d'ingénierie en bois pour l'architecture contemporaine : cas d'étude. Ljubljana: Ljubljana, Biotechnical Faculty, Department of Wood Science and Technology.
Kitek Kuzman, M., Ayrilmis , N., Šernek, M., Kariz, M. (2019). Effect of selected printing settings on viscoelastic behaviour of 3D printed polymers with and without wood. Materials research express, 2019, str.1-21.
Meier, K., Streiff, H., Richter, K. (1990). Zur ökologischen Bewertung des Bau- und Werkstoffs Holz. For the ecological assessment of the construction and wood material. Schweizer Ingenieur und Architekt, 108 (1990), str. 689-695.
Mitchell, W. J. (2005). Constructing Complexity. V: Martens, B.; Brown, A.(ur), Computer Aided Architectural Design Futures 2005, Proceedings of the 11th International CAAD Futures Conference, Vienna University of Technology, Vienna, Austria. June 20-22, Springer, str. 41-50.
Pohl, G., Nachtigall, W. (2015). Biomimetics for architecture & design. Merges biological knowledge with architectural know-how. Nature-Analogies-Technology. Switzerland: Springer.
Picon, A. (2010). Digital Culture in Architecture. Basel: Birkhäuser.
Ruskin, J. (1981). The Seven Lamps of Architecture. New York: Farrar, Straus and Goroux.
Sandberg, D., Kitek Kuzman, M., Gaff, M. (2019). Engineered Wood Products- Wood as an engineering and architectural material. Kompozitni materialy na bazi dřeva - Dřevo jako kompozitni a konstrukčni material. Prag: Czech University of Life Science in Prag.
Singh, MM., Sawhney, A., Sharma, V. (2017). Utilising Building Component Data from BIM for Formwork Planning. Construction Economics and Building. 17(4), str. 20-36.
Suyi, L., K W Wang, K. W. (2017). Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspiration & Biomimetics, 12, 011001, str. 1-17
Szalapaj, P. (2005). Contemporary Architecture and the Digital Design Process. TaylorFrancis Group.
Šernek, M. (2009). Konstrukcijski kompozitni les. V: M. Kitek Kuzman (ur.), Gradnja z lesom izziv in priložnost za Slovenijo (str. 84-88). Ljubljana: Fakulteta za arhitekturo, Biotehniška fakulteta, Oddelek za lesarstvo, Univerza v Ljubljani.
Zerbst, R. (2005). Gaudi : The complete buildings. Köln: Taschen.
Zellner, P. (1999). Hybrid Space: New Forms in Digital Architecture. Thames & Hudson.
Tao, Y., Wang, H., Li, Z., Li, P., Shi, SQ. (2017). Development and Application of Wood Flour-Filled Polylactic Acid Composite Filament for 3D Printing. Materials, 2017, 10(4), str. 339-345
Torelli, N., (2009). Les zares. V: M. Kitek Kuzman (ur.), Gradnja z lesom izziv in priložnost za Slovenijo (str. 66 - 73). Ljubljana: Fakulteta za arhitekturo, Biotehniška fakulteta, Oddelek za lesarstvo, Univerza v Ljubljani.
Zbašnik Senegačnik, M., Kitek Kuzman, M. (2014). Interpretations of organic architecture = Interpretacije organske arhitekture. Prostor : znanstveni časopis za arhitekturu i urbanizam, 22, 2 (48), str. 291-301.
Weinand, Y. (2017). Advanced timber structures. Basel: Birhäuser.
Wright, F.L., (1963). The Natural House. New York: Mentor Book.

Spletni viri:
3D Printed Office Building Unveiled in Dubai. Pridobljeno v novembru 2019 s spletne strani
House of Bread. Pridobljeno v novembru 2019 s spletne strani
ICD, Institut for Computational Design and Construction. Pridobljeno v novembru 2019 s spletne strani
Kilden / ALA Architects. Pridobljeno v novembru 2019 s spletne strani
La Seine Musicale / Shigeru Ban Architects. Pridobljeno v novembru 2019 s spletne strani
Metropol Parasol / J. Mayer H + Arup. Pridobljeno v novembru 2019 s spletne strani
Neubau Swatch Biel. Pridobljeno v novembru 2019 s spletne strani
Nine Bridges Country Club / Shigeru Ban Architects. Pridobljeno v novembru 2019 s spletne strani
Temporary chapel for the Deaconesses of St-Loup - Localarchitecture / Danilo Mondada + Localarchitecture. Pridobljeno v novembru 2019 s spletne strani
The Bowooss Bionic Inspired Research Pavilion | School of Architecture at Saarland University. Pridobljeno v novembru 2019 s spletne strani
University of Stuttgart makes Urbach Tower from self-shaping wood. Pridobljeno v novembru 2019 s spletne strani
Urban Cabin. Pridobljeno v novembru 2019 s spletne strani